Adjoint and Coadjoint Orbits of the Poincaré Group
نویسندگان
چکیده
In this paper we give an effective method for finding a unique representative of each orbit of the adjoint and coadjoint action of the real affine orthogonal group on its Lie algebra. In both cases there are orbits which have a modulus that is different from the usual invariants for orthogonal groups. We find an unexplained bijection between adjoint and coadjoint orbits. As a special case, we classify the adjoint and coadjoint orbits of the Poincaré group.
منابع مشابه
Magnetic Geodesic Flows on Coadjoint Orbits
We describe a class of completely integrable G-invariant magnetic geodesic flows on (co)adjoint orbits of a compact connected Lie group G with magnetic field given by the Kirillov-Konstant 2-form.
متن کاملQuantum Co-adjoint Orbits of the Real Diamond Group
We present explicit formulas for deformation quantization on the coadjoint orbits of the real diamond Lie group. From this we obtain quantum halfplans, quantum hyperbolic cylinders, quantum hyperbolic paraboloids via Fedosov deformation quantization and finally, the corresponding unitary representations of this group.
متن کاملar X iv : m at h - ph / 0 60 20 16 v 2 3 A pr 2 00 6 Magnetic Geodesic Flows on Coadjoint Orbits ∗ † ‡
We describe a class of completely integrable G-invariant magnetic geodesic flows on (co)adjoint orbits of a compact connected Lie group G with magnetic field given by the Kirillov-Konstant 2-form.
متن کاملar X iv : m at h - ph / 0 60 20 16 v 1 7 F eb 2 00 6 Magnetic Geodesic Flows on Coadjoint Orbits ∗
We describe a class of completely integrable G-invariant magnetic geodesic flows on (co)adjoint orbits of a compact connected Lie group G with magnetic field given by the Kirillov-Konstant 2-form.
متن کاملQuantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits
Let G be a complex reductive group. We study the problem of associating Dixmier algebras to nilpotent (co)adjoint orbits of G, or, more generally, to orbit data for G. If g = 0 + n + in is a triangular decomposition of g and 0 is a nilpotent orbit, we consider the irreducible components of 0 n n, which are Lagrangian subvarieties of 0. The main idea is to construct, starting with certain "good"...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004